What is NAD+

and Why Is it Important for Aging and Health?

You can’t live without the coenzyme NAD+, nicotinamide adenine dinucleotide.

Here’s why it’s so important, how it was discovered, and how you can get more of it.

NAD+, or nicotinamide adenine dinucleotide, is a coenzyme found in all living cells, and it’s required for the fundamental biological processes that make life possible. But NAD+ levels decline as we age. NAD+ has two general sets of reactions in the human body: helping turn nutrients into energy as a key player in metabolism and working as a helper molecule for proteins that regulate other biological activity. These processes are incredibly important because they are responsible for maintaining the health of DNA, regulating circadian rhythms, and keeping humans healthier for longer.

How NAD+ Powers Health, Life, And Aging

Open any biology textbook and you’ll learn about NAD+, which stands for nicotinamide adenine dinucleotide. It’s a coenzyme found in all living cells that’s required for the fundamental biological processes that make life possible, from metabolism to DNA repair. NAD+ is hard at work in the cells of humans and other mammals, yeast and bacteria, even plants. Nothing can live without NAD+, and low levels are often accompanied by negative health consequences.

Scientists have known about NAD+ since it was first discovered in 1906, and since then our understanding of its importance has continued to evolve. For example, NAD+ precursors played a role in mitigating pellagra, a fatal disease that plagued the American south in the 1900s. Scientists at the time identified that milk and yeast, which both contain NAD+ precursors, alleviated symptoms. Over time scientists have identified several NAD+ precursors — including nicotinic acid, nicotinamide, and nicotinamide riboside, among others — which make use of natural pathways that lead to NAD+. Think of NAD+ precursors as different routes you can take to get to a destination. All the pathways get you to the same place but by different modes of transportation.

Recently, NAD+ has become a prized molecule in scientific research because of its central role in biological functions, with research in animals tying NAD+ to notable benefits. For example, a 2016 study found that mice and worms with degenerative muscles had improved muscle function when supplemented with NAD+ precursors. A 2017 study showed that mice supplemented with an NAD+ precursor experienced an increase in DNA damage repair, with tissue in two-year-old mice given the NAD+ precursor looking identical to tissue in three-month-old mice. And a 2018 studyfound that mice with NAD+ precursor supplementation had improved cognitive function, pointing to signs of therapeutic potential for Alzheimer’s. These are only some of the recent findings, all of which continue to inspire researchers to translate these findings to humans, exploring the potential for NAD+ to positively affect human health through supplementation.

 

So how exactly does NAD+ play such an important role? In short, it’s a coenzyme or “helper” molecule, binding to other enzymes to help cause reactions on the molecular level that produce positive outcomes on the everyday health level. NAD+ has two general sets of reactions in the human body: helping turn nutrients into energy as a key player in metabolism and working as a helper molecule for proteins that regulate other biological activity.

But the body doesn’t have an endless supply of NAD+. In fact, it actually declines with age.